

Authorized Distributor: Darrah Electric Company www.darrahelectric.com

TK18

Phase Control Thyristor

Replaces January 2000 version, DS45253-4.0

DS4253-5.0 July 2001

FEATURES

■ High Surge Capability

APPLICATIONS

- High Power Drives
- High Voltage Power Supplies
- DC Motor Control
- Welding
- Battery Chargers

VOLTAGE RATINGS

Type Number	Repetitive Peak Voltages V _{DRM} V _{RRM} V	Conditions
TK18 12 M or K TK18 10 M or K	1200 1000	$\begin{split} & T_{vj} = 0^{\circ} \text{ to } 125^{\circ}\text{C}, \\ & I_{\text{DRM}} = I_{\text{RRM}} = 100\text{mA}, \\ & V_{\text{DRM}}, V_{\text{RRM}} t_{\text{p}} = 10\text{ms}, \\ & V_{\text{DSM}} \& V_{\text{RSM}} = \\ & V_{\text{DRM}} \& V_{\text{RRM}} + 100V \\ & \text{respectively} \end{split}$

Lower voltage grades available.

ORDERING INFORMATION

When ordering, select the required part number shown in the Voltage Ratings selection table, then:-

Add K to type number for 1/2" 20 UNF thread, e.g. **TK18 12K**. or

Add M to type number for M12 thread, e.g. TK18 12M.

Note: Please use the complete part number when ordering and quote this number in any future correspondance relating to your order.

KEY PARAMETERS

 V_{DRM} 1200V $I_{\text{T(AV)}}$ 115A I_{TSM} 2000A $dVdt^*$ 200V/ μ s dI/dt 500A/ μ s

^{*}Higher dV/dt selections available

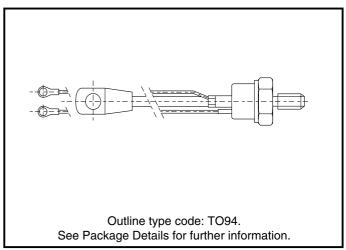


Fig. 1 Package outline

Darrah Electric Company

5914 Merrill Avenue Cleveland, OH 44102 USA 216-631-0912 216-631-0440 fax www.darrahelectric.com

CURRENT RATINGS

T_{case} = 60°C unless stated otherwise.

Symbol	Parameter	Conditions	Max.	Units
I _{T(AV)}	Mean on-state current	Half wave resistive load	152	Α
I _{T(RMS)}	RMS value	-	239	Α
I _T	Continuous (direct) on-state current	-	206	Α

T_{case} = 80°C unless stated otherwise.

Symbol	Parameter	Conditions	Max.	Units
I _{T(AV)}	Mean on-state current	Half wave resistive load	115	Α
I _{T(RMS)}	RMS value	-	180	Α
I _T	Continuous (direct) on-state current	-	155	Α

SURGE RATINGS

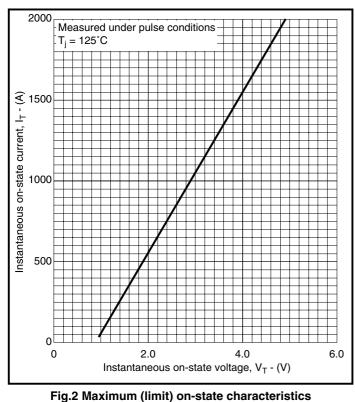
Symbol	Parameter	Conditions	Max.	Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; T _{case} = 125°C	1.6	kA
l ² t	I ² t for fusing	$V_R = 50\% V_{RRM} - 1/4 sine$	12.8 x 10 ³	A²s
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine; T _{case} = 125°C	2.0	kA
l ² t	I ² t for fusing	V _R = 0	20.0 x 10 ³	A²s

THERMAL AND MECHANICAL DATA

Symbol	Parameter	Conditions	Min.	Max.	Units
R _{th(j-c)}	Thermal resistance - junction to case	dc	-	0.24	°C/W
R _{th(c-h)}	i i i ci i i ci i ci i ci i ci i ci i	Mounting torque 15.0Nm with mounting compound	-	0.08	°C/W
T _{vj}	Virtual junction temperature	On-state (conducting)	-	125	°C
		Reverse (blocking)	-	125	°C
T _{stg}	Storage temperature range		-40	150	°C
-	Mounting torque		12.0	15.0	Nm

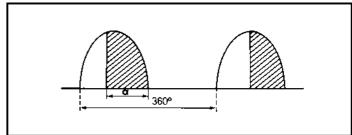
Authorized Distributor: Darrah Electric Company www.darrahelectric.com

DYNAMIC CHARACTERISTICS


Symbol	Parameter	Conditions		Min.	Max.	Units
V _{TM}	Maximum on-state voltage	At 300A peak, T _{case} = 25°C		-	1.5	V
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V _{RRM} /V _{DRM} , T _{case} = 125°C		-	10	mA
dV/dt	Maximum linear rate of rise of off-state voltage	To 60% V _{DRM} T _j = 125°C, Gate open circuit		-	200	V/µs
all/alk	dl/dt Rate of rise of on-state current	Gate source 20V, 20Ω $t_r \le 0.5\mu s$, $T_j = 125^{\circ}C$	Repetitive 50Hz	-	500	A/μs
ai/at			Non-repetitive	-	800	A/μs
V _{T(TO)}	Threshold voltage	At T _{vj} = 125°C		-	0.9	V
r _T	On-state slope resistance	At T _{vj} = 125°C		-	2.0	mΩ
t _{gd}	Delay time	$V_{\rm D} = 300 \text{V}, I_{\rm G} = 1 \text{A}, I_{\rm T} = 50 \text{A}, \text{dI/dt} = 50 \text{A/}\mu\text{s}, \\ \text{dI}_{\rm G}/\text{dt} = 1 \text{A/}\mu\text{s}, T_{\rm j} = 25^{\circ}\text{C}$		-	1.5	μs
I _L	Latching current	$T_{j} = 25^{\circ}C, V_{D} = 12V$		-	-	mA
I _H	Holding current	$T_j = 25^{\circ}C, V_D = 12V, I_{TM} = 1A$		-	50	mA

GATE TRIGGER CHARACTERISTICS AND RATINGS

Symbol	Parameter	Conditions		Max.	Units
V _{GT}	Gate trigger voltage	$V_{DRM} = 12V, T_{case} = 25^{\circ}C, R_{L} = 6\Omega$	-	3.0	V
I _{GT}	Gate trigger current	$V_{DRM} = 12V, T_{case} = 25^{\circ}C, R_{L} = 6\Omega$	-	125	mA
V _{GD}	Gate non-trigger voltage	At $V_{DRM} T_{case} = 125^{\circ}C$, $R_{L} = 12\Omega$	-	0.2	V
V _{FGM}	Peak forward gate voltage	Anode positive with respect to cathode	-	3.0	V
V _{FGN}	Peak forward gate voltage	Anode negative with respect to cathode	-	0.25	V
V _{RGM}	Peak reverse gate voltage		-	5	V
I _{FGM}	Peak forward gate current	Anode positive with respect to cathode	-	4	Α
P _{GM}	Peak gate power	-	-	16	W
P _{G(AV)}	Mean gate power		-	3	W


CURVES

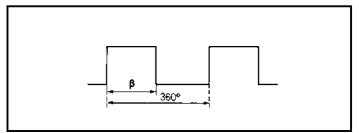

400 AVERAGE CURRENT, I_{T(AVI} (A))

Fig.3 Maximum on-state power dissipation for sinusoidal current waveform

SINUSOIDAL CURRENT WAVEFORM

RECTANGULAR CURRENT WAVEFORM

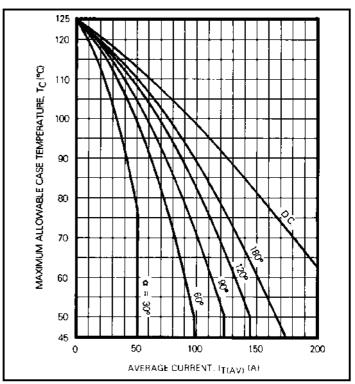
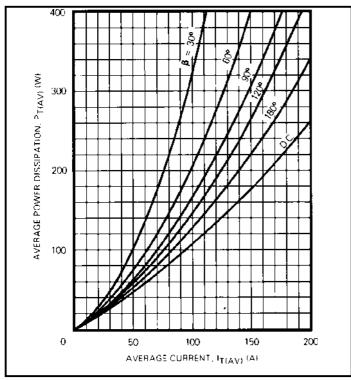



Fig.4 Maximum allowable case temperature for sinusoidal current waveform

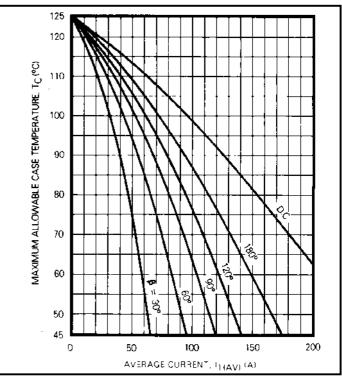
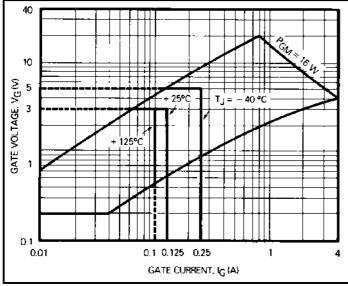
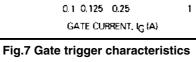




Fig.5 Maximum on-state power dissipation for rectangular current waveform

Fig.6 Maximum allowable case temperature for rectangular current waveform

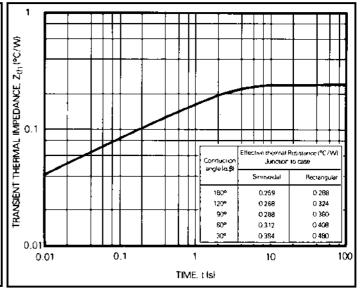
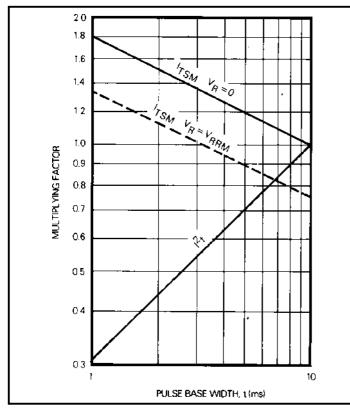
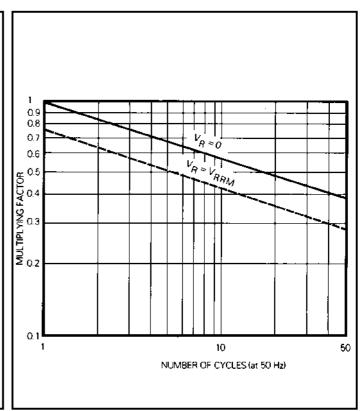



Fig.8 Transient thermal impedance - junction to case



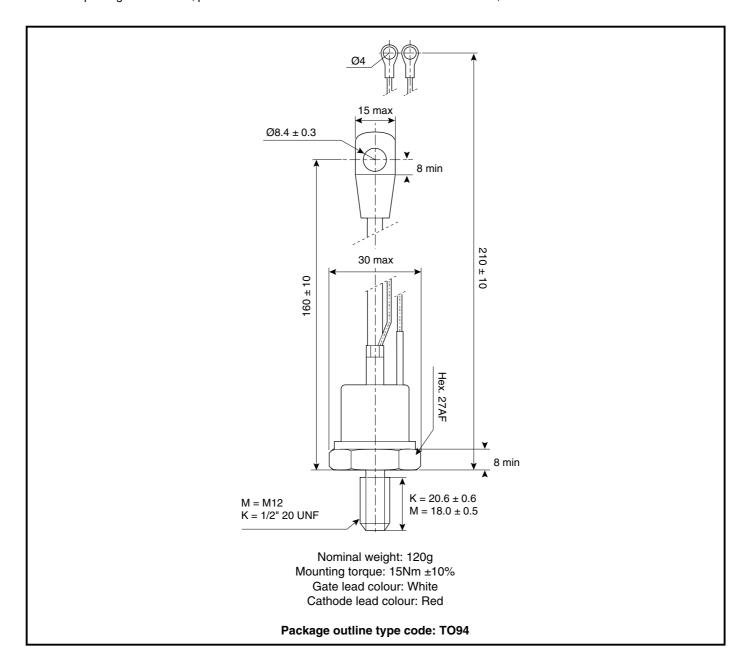

Fig.9 Multiplying factor for non-repetive sub-cycle surge onstate current and I²t rating

Fig.10 Multiplying factor for non-repetive surge on-state current

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

POWER ASSEMBLY CAPABILITY

The Power Assembly group was set up to provide a support service for those customers requiring more than the basic semiconductor, and has developed a flexible range of heatsink and clamping systems in line with advances in device voltages and current capability of our semiconductors.

We offer an extensive range of air and liquid cooled assemblies covering the full range of circuit designs in general use today. The Assembly group offers high quality engineering support dedicated to designing new units to satisfy the growing needs of our customers.

Using the latest CAD methods our team of design and applications engineers aim to provide the Power Assembly Complete Solution (PACs).

HEATSINKS

The Power Assembly group has its own proprietary range of extruded aluminium heatsinks which have been designed to optimise the performance of Dynex semiconductors. Data with respect to air natural, forced air and liquid cooling (with flow rates) is available on request.

For further information on device clamps, heatsinks and assemblies, please contact your nearest sales representative or Customer Services.

Stresses above those listed in this data sheet may cause permanent damage to the device. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture of the package. Appropriate safety precautions should always be followed.

http://www.dynexsemi.com

e-mail: power_solutions@dynexsemi.com

HEADQUARTERS OPERATIONS
DYNEX SEMICONDUCTOR LTD
Doddington Road, Lincoln.
Lincolnshire. LN6 3LF. United Kingdom.
Tel: +44-(0)1522-500500
Fax: +44-(0)1522-500550

CUSTOMER SERVICE Tel: +44 (0)1522 502753 / 502901. Fax: +44 (0)1522 500020

© Dynex Semiconductor 2003 TECHNICAL DOCUMENTATION – NOT FOR RESALE. PRODUCED IN UNITED KINGDOM

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee expresses or implied is made regarding the capability, performance or suitability of any product or service. The Company reserves the right to alter without prior notice the specification, design or price of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to the Company's conditions of sale, which are available on request.

All brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.