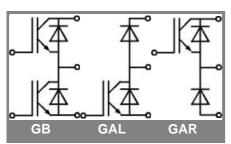


SEMITOP[®] 3

IGBT Module

SK50GB067 SK50GAL067

SK50GAR067


Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- Low treshold voltage

Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifie					
Symbol	Conditions		Values	Units	
IGBT					
V _{CES}	T _j = 25 °C		600	V	
I _C	T _j = 125 °C	T _s = 25 °C	83	А	
		T _s = 80 °C	54	А	
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		240	А	
V _{GES}			± 20	V	
t _{psc}	$\label{eq:V_CC} \begin{array}{l} V_{CC} \texttt{=} 300 \; V; \; V_{GE} \leq 20 \; V; \\ V_{CES} \texttt{<} 600 \; V \end{array}$	T _j = 125 °C	10	μs	
Inverse D	Diode				
I _F	T _j = 150 °C	T _s = 25 °C	90	А	
		T _s = 80 °C	56	А	
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			А	
I _{FSM}	t _p = 10 ms; sinusoidal	T _j = °C	360	А	
Freewhee	eling Diode				
I _F	T _j = 150 °C	T _{case} = 25 °C	90	А	
		T _{case} = 80 °C	56	A	
I _{FRM}				А	
I _{FSM}	t _p = ms;	T _j = °C	360	А	
Module					
I _{t(RMS)}				А	
T _{vj}			-40 +150	°C	
T _{stg}			-40 +125	°C	
V _{isol}	AC, 1 min.		2500	V	

Characteristics T _s =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 1,2 mA		3	4	5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,008	mA
I _{GES}	V_{CE} = 0 V, V_{GE} = 20 V	T _j = 25 °C			480	nA
V _{CE0}		T _j = 150 °C			2	V
r _{CE}	V _{GE} = 15 V	T _j = 150°C		12,5		mΩ
V _{CE(sat)}	I _{Cnom} = 120 A, V _{GE} = 15 V			2,8	3,15	V
		T _j = 125°C _{chiplev.}		3,5	4	V
C _{ies}				6		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,6		nF
C _{res}				0,36		nF
t _{d(on)}				22		ns
t _r E _{on}	R _{Gon} = 11 Ω	V _{CC} = 400V		10		ns
E _{on}		I _{Cnom} = 120A		7,5		mJ
t _{d(off)}	R_{Goff} = 11 Ω	T _j = 125 °C		280		ns
t _f		V _{GE} =±15V		26		ns
E _{off}				4		mJ
$R_{th(j-s)}$	per IGBT				0,45	K/W

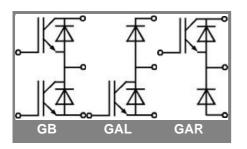
SEMITOP[®] 3

IGBT Module

SK50GB067

SK50GAL067

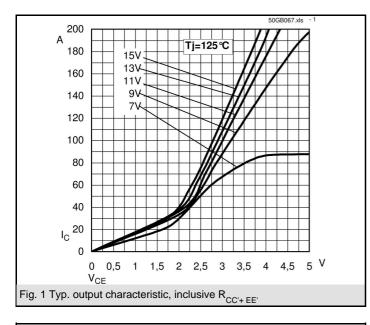
SK50GAR067


Target Data

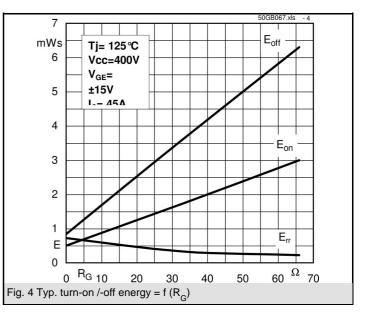
Features

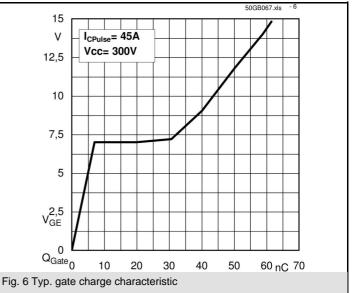
- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- Low treshold voltage

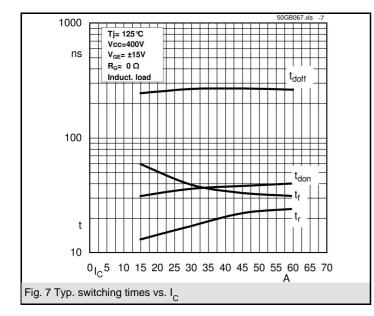
Typical Applications


- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS




Characteristics								
Symbol	Conditions		min.	typ.	max.	Units		
Inverse Diode								
$V_F = V_{EC}$	I _{Fnom} = 120 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}			2	V		
		T _j = 150 °C _{chiplev.}		1,25		V		
V _{F0}		T _j = 25 °C				V		
		T _j = 150 °C		1		V		
r _F		T _j = 25 °C				mΩ		
		T _j = 150 °C		4		mΩ		
I _{RRM}	I _{Fnom} = 120 A	T _j = 125 °C				А		
Q _{rr}	di/dt = -100 A/µs	-				μC		
Err	V _{CC} = 400V					mJ		
R _{th(j-s)D}	per diode				0,8	K/W		
M _s	to heat sink		2,25		2,5	Nm		
w				29		g		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.


This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

