

Date: 23rd sFebruary 2021

Data Sheet Issue: 1

Dual Diode Module Types MDD320-60N2 to MDD320-65N2

Absolute Maximum Ratings

V _{RRM} [V]	
	MDD
6000	320-60N2
6500	320-65N2

	VOLTAGE RATINGS	MAXIMUM LIMITS	UNITS
V _{RRM}	Repetitive peak reverse voltage ¹⁾	6000-6500	V
Vrsm	Non-repetitive peak reverse voltage 1)	6100-6600	V

	OTHER RATINGS	MAXIMUM LIMITS	UNITS
I _{F(AV)M}	Maximum average on-state current, $T_C = 85^{\circ}C^{2}$	395	А
IF(AV)M	Maximum average on-state current. $T_c = 100^{\circ}C^{2}$	320	А
I _{F(RMS)M}	Nominal RMS on-state current, $T_C = 85^{\circ}C^{2}$	625	А
IF(RMS)M	Nominal RMS on-state current, $T_c = 100^{\circ}C^{2}$	505	А
IF(d.c.)	D.C. on-state current, $T_C = 55^{\circ}C$	715	А
I _{FSM}	Peak non-repetitive surge $t_p = 10 \text{ ms}$, $V_{RM} = 60\% V_{RRM}$ ³⁾	5.4	kA
IFSM2	Peak non-repetitive surge $t_p = 10$ ms, $V_{RM} \le 10V^{3}$	6.0	kA
l²t	$I^{2}t$ capacity for fusing $t_{p} = 10$ ms, $V_{RM} = 60\% V_{RRM}$ ³⁾	146	kA²s
l²t	I ² t capacity for fusing t_p = 10 ms, V _{RM} \leq 10 V ³)	180	kA²s
Visol	Isolation Voltage 4)	3000	V
T _{vj op}	Operating temperature range	-40 to +140	°C
T _{stg}	Storage temperature range	-40 to +50	°C

Notes:

1) De-rating factor of 0.13% per °C is applicable for T_{vj} below 25°C.

2) Single phase; 50 Hz, 180° half-sinewave.

3) Half-sinewave, 140°C T_{vj} initial.

4) AC RMS voltage, 50 Hz, 1min test

Characteristics

	PARAMETER	MIN.	TYP.	MAX.		UNITS
Vfm	Maximum peak on-state voltage	-	-	2.40	I _{FM} = 1570 A, T _{vj} = 25°C	V
V _{F0}	Threshold voltage	-	-	0.95		V
۲T	Slope resistance	-	-	1.10		mΩ
Irrm	Peak reverse current	-	-	100	Rated V _{RRM}	mA
Qrr	Recovered Charge	-	-	3600		μC
Q _{ra}	Recovered Charge, 25% chord	-	-	3300	I _{FM} = 500 A, t _p = 1 ms, di/dt = 5A/μs,	μC
Irm	Reverse recovery current	-	-	110	V _R = 100 V	А
t _{rr}	Reverse recovery time, 25% chord	-	-	60		μs
D	Thermal registeres junction to ease	-	-	0.0650	Single Arm	K/W
™ thJC	Thermai resistance, junction to case	-	-	0.0325	Whole Module	K/W
D	Thermal resistence, each to be stainly	-	-	0.020	Single Arm	K/W
K thCH	CH I hermal resistance, case to heatsink		-	0.010	Whole Module	K/W
F1	Mounting force (to heatsink)	-	6.00	-		Nm
F ₂	Mounting force (to terminals)	-	12.00	-	2)	Nm
Wt	Weight	-	1500	-		g

Notes:

Unless otherwise indicated T_j=140°C.
Screws must be lubricated.

Notes on Ratings and Characteristics

1.0 Voltage Grade Table

Voltage Grade	V _{RRM} V	Vrsm V	V _R DC V
60	6000	6100	3600
65	6500	6600	3900

2.0 Extension of Voltage Grades

This report is applicable to other voltage grades when supply has been agreed by Sales/Production.

3.0 De-rating Factor

A blocking voltage de-rating factor of 0.13%/°C is applicable to this device for T_{vj} below 25°C.

4.0 Computer Modelling Parameters

4.1 Diode Dissipation Calculations

$$I_{AV} = \frac{-V_{F0} + \sqrt{V_{F0}^2 + 4 \cdot f f^2 \cdot r_T \cdot W_{AV}}}{2 \cdot f f^2 \cdot r_T} \qquad \text{and:} \qquad \begin{aligned} W_{AV} &= \frac{\Delta T}{R_{th}} \\ \Delta T &= T_{j \max} - T_C \end{aligned}$$

Where $V_{F0} = 0.95 \text{ V}$, $r_T = 1.10 \text{ m}\Omega$.

 R_{th} = Supplementary thermal impedance, see table below and

ff = Form factor, see table below.

Supplementary Thermal Impedance								
Conduction Angle 30° 60° 90° 120° 180° 270° d.c.							d.c.	
Square wave	0.0810	0.0768	0.0742	0.0725	0.0705	0.0690	0.0650	
Sine wave	0.0766	0.0724	0.0706	0.0694	0.0680			

Form Factors							
Conduction Angle	30°	60°	90°	120°	180°	270°	d.c.
Square wave	3.464	2.449	2.000	1.732	1.414	1.149	1.000
Sine wave	4.025	2.778	2.220	1.879	1.568		

4.2 Calculating diode VF using ABCD Coefficients

The on-state characteristic I_F vs. V_F , on page 6 is represented by a set of constants A, B, C, D, forming the coefficients of the representative equation for V_F in terms of I_F given below:

$$V_F = A + B \cdot ln(I_F) + C \cdot I_F + D \cdot \sqrt{I_F}$$

The constants, derived by curve fitting software, are given below for both hot and cold characteristics. The resulting values for V_F agree with the true device characteristic over a current range, which is limited to that plotted.

	25°C Coefficients		140°C Coefficients
Α	0.97127313	А	0.9566156
В	2.360709×10 ⁻³	В	-0.0404543
С	7.656939×10 ⁻⁴	С	8.818386×10 ⁻⁴
D	5.242400×10 ⁻³	D	0.0158072

4.3 D.C. Thermal Impedance Calculation

$$r_t = \sum_{p=1}^{p=n} r_p \cdot \left(1 - e^{\frac{-t}{\tau_p}}\right)$$

Where p = 1 to *n* and:

- n = number of terms in the series
- t = Duration of heating pulse in seconds
- r_t = Thermal resistance at time t
- $r_{p} \ = Amplitude \ of \ p^{th} \ term$
- τ_p = Time Constant of rth term

The coefficients for this device are shown in the table below:

D.C.									
Term	1	2	3	4	5	6			
rp	0.0385	0.01253	0.0144	0.007273	0.001871	0.0001367			
τρ	3.124	0.8558	0.1999	0.009185	0.002295	0.000238			

5.0 Reverse recovery ratings

(i) Q_{ra} is based on 25% I_{RM} chord as shown in Fig. 1

(ii)

K Factor =
$$\frac{t_1}{t_2}$$

Curves

Figure 2 – Transient thermal impedance

Figure 6 - Recovered charge, Qra (25% chord)

Figure 8 - Maximum recovery time, trr (25% chord)

Figure 9 – On-state current vs. Power dissipation – Sine wave

Figure 10 – On-state current vs. Heatsink temperature – Sine wave

Figure 12 – On-state current vs. Heatsink temperature – Square wave

Figure 13 – Maximum surge and I²t Ratings

Outline Drawing & Ordering Information

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics