

Current Transducer LTS 6-NP

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Αt Primary nominal r.m.s. current 6 I_{PN} Primary current, measuring range I_{p} $0.. \pm 19.2$ Αt $2.5 \pm (0.625 \cdot \mathbf{I}_{p}/\mathbf{I}_{pN}) \, V$ V_{OUT} Analog output voltage @ In $I_{P} = 0$ 2.5 1) \mathbf{N}_{s} Number of secondary turns (± 0.1 %) 2000 $\mathbf{R}_{\scriptscriptstyle L}$ Load resistance ≥ 2 $k\Omega$ \mathbf{R}_{IM} Internal measuring resistance (± 0.5 %) 208.33 Ω TCR Thermal drift of $\mathbf{R}_{\scriptscriptstyle \mathrm{IM}}$ < 50 ppm/K Supply voltage (± 5 %) \mathbf{V}_{C} $\begin{array}{c} \mathbf{I}_{\mathrm{C}} \\ \mathbf{V}_{\mathrm{d}} \\ \mathbf{V}_{\mathrm{e}} \\ \mathbf{\hat{V}} \end{array}$ Current consumption @ $V_c = 5 \text{ V}$ Typ $23+I_{S}^{2}+(V_{OUT}/R_{L}) \text{ mA}$ R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn 3 kV R.m.s. voltage for partial discharge extinction @ 10 pC > 1.5 kV Impulse withstand voltage 1.2/50 µs > 8 kV

Accuracy - Dynamic performance data								
X	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$	±0.2		%				
X	Accuracy with $\mathbf{R}_{\text{IM}} @ \mathbf{I}_{\text{PN}}$, $\mathbf{T}_{\text{A}} = 25^{\circ}\text{C}$	±0.7		%				
$\epsilon_{\scriptscriptstyle \! \scriptscriptstyle L}$	Linearity	< 0.1		%				
		Тур	Max					
TCV	Thermal drift of $\mathbf{V}_{\text{OUT}} @ \mathbf{I}_{\text{P}} = 0$ - 10°C + 85°C	200	460	ppm/K				
TCE _G	Thermal drift of the gain - 10°C + 85°C		50 ³⁾	ppm/K				
V _{OM}	Residual voltage @ $I_p = 0$, after an overload of $3 \times I_{pN}$		±0.5	mV				
	5 x I _{PN}		±2.0	mV				
	10 x I _{PN}		±2.0	mV				
t _{ra}	Reaction time @ 10 % of I _{PN}	< 50		ns				
t,	Response time @ 90 % of I _{PN}	< 400		ns				
di/dt	di/dt accurately followed	> 15		A/µs				
f	Frequency bandwidth (0 0.5 dB)	DC 100		kHz				
	(- 0.5 1 dB)	DC 200		kHz				

	General data							
T_{A}	Ambient operating temperature	- 10 + 85	°C					
T _s	Ambient storage temperature	- 25 + 100	°C					
Ü	Insulating material group	IIIa						
m	Mass	10	g					
	Standards	EN 50178						
		EN 60950						

 $\overline{\text{Notes}}$: 1) Absolute value @ $\mathbf{T}_{A} = 25^{\circ}\text{C}$, 2.475 < \mathbf{V}_{OUT} < 2.525

2) Please see the operation principle on the other side

 $^{3)}$ Only due to TCR $_{\rm IM}$.

$I_{PN} = 2 - 3 - 6 A$

Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Compact design for PCB mounting
- Insulated plastic case recognized according to UL 94-V0
- Incorporated measuring resistance
- Extended measuring range.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Copyright protected.

011015/4

Dimensions LTS 6-NP (in mm. 1 mm = 0.0394 inch)

Number of primary turns	Primary nominal r.m.s. current I _{PN} [A]	Nominal output voltage \mathbf{V}_{OUT} [V]	Primary resistance \mathbf{R}_{P} [$\mathrm{m}\Omega$]	Primary insertion inductance L _P [μH]	Recommended connections
1	± 6	2.5 ± 0.625	0.18	0.013	6 5 4 OUT O
2	± 3	2.5 ± 0.625	0.81	0.05	6 5 4 OUT OOO OOO
3	± 2	2.5 ± 0.625	1.62	0.12	6 5 4 OUT 0 0 IN 1 2 3

Mechanical characteristics

• General tolerance ± 0.2 mm

• Fastening & connection of primary 6 pins 0.7 x 0.8 mm Recommended PCB hole 1.3 mm

• Fastening & connection of secondary 3 pins 0.5 x 0.35 mm Recommended PCB hole 0.8 mm

• Additional primary through-hole Ø 3.2 mm

Remark

 \bullet $\,{\bf V}_{\rm OUT}$ is positive when ${\bf I}_{\rm P}$ flows from terminals 1, 2, 3 to terminals 6, 5, 4.

Output Voltage - Primary Current

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.