

Current Transducer LA 205-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

El	ectrical data						
I _{PN}	Primary nominal r.m.s.	200				Α	
I _P	Primary current, measuring range		0 ± 300				Α
Î _{P max}	Measuring overload 1)		600				Α
R _M	Measuring resistance	@	$T_{\Delta} = 70^{\circ}C \mid T_{\Delta} = 85^{\circ}$: 85°C	;	
IVI			$\mathbf{R}_{M\;min}^{N}$	$R_{M\;max}$	R _{M min}	$R_{_{ m M\ max}}$	
	with ± 12 V	@ $\pm 200 A_{max}$	0	68	0	66	Ω
		@ ± 300 A max	0	33	0	30	Ω
	with ± 15 V	@ ± 200 A max	5	95	5	93	Ω
		@ ± 300 A max	5	50	5	49	Ω
I _{SN}	Secondary nominal r.m.s. current		100			mΑ	
K _N	Conversion ratio		1:2000				
V _c	Supply voltage (± 5 %)		± 12 15			V	
I _C	Current consumption	Surrent consumption $20 (@ \pm 15 \text{V}) + I_s$		mΑ			
V _b	R.m.s rated voltage 2), safe separation			162	25		V
-		basic isolation		325	50		V

Accuracy - Dynamic performance data								
X _G	Overall accuracy @ I _{PN} , T _A = 25°C		± 0.8					
$\mathbf{e}_{\scriptscriptstyle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	Linearity	< 0.1		%				
		Тур	Max					
I _o	Offset current @ $I_p = 0$, $T_A = 25$ °C		Max ± 0.15 ± 0.50	mΑ				
I _{OM}	Residual current 3) @ $I_p = 0$, after an overload of 3 x I_{PN}		± 0.50	mΑ				
I _{OT}	Thermal drift of I _o - 10°C + 85°C	± 0.15	± 0.30	mΑ				
t _{ra}	Reaction time @ 10 % of I _{P max}	< 500		ns				
t,	Response time 4) @ 90 % of I _{P max}	< 1		μs				
di/dt	di/dt accurately followed	> 100		A/µs				
f	Frequency bandwidth (- 3 dB)	DC 1	100	kHz				

G	eneral data			
T _Δ	Ambient operating temperature		- 10 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_{A} = 70^{\circ}C$	35	Ω
Ü		$T_A = 85^{\circ}C$	37	Ω
m	Mass		110	g
	Standards 5)		EN 50178	

Notes : 1) 3 mn/hour @ $V_C = \pm 15 \text{ V}$, $R_M = 5 \Omega$

- Pollution class nr 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- $^{4)}$ With a di/dt of 100 A/ μ s
- ⁵⁾ A list of corresponding tests is available

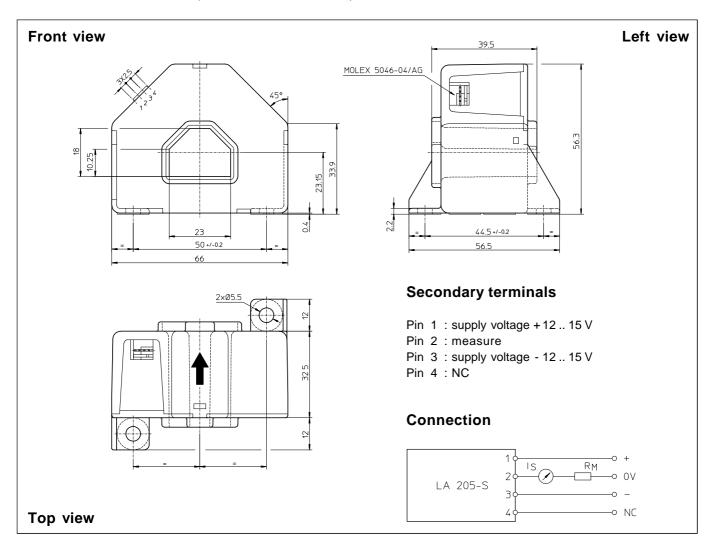
$I_{DN} = 200 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Patent pending.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980716/5

Dimensions LA 205-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary

± 0.5 mm

2 holes Ø 5.5 mm 23 x 18 mm

23 X 10 111111

Molex 5046-04/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.