$V_{DRM} = 4500 V$

 $I_{TGQM} = 2000 A$

 $I_{TSM} = 13 \text{ kA}$

 $V_{T0} = 1.80 V$

 $r_T = 0.85 \text{ m}\Omega$

 $V_{DClin} = 2200 V$

Gate turn-off Thyristor

5SGA 20H4502

Doc. No. 5SYA 1210-01 Aug. 2000

- Patented free-floating silicon technology
- Low on-state and switching losses
- · Annular gate electrode
- Industry standard housing
- · Cosmic radiation withstand rating

Authorized Distributor: Darrah Electric Company www.darrahelectric.com

Blocking

V_{DRM}	Repetitive peak off-state voltage		4500	V	$V_{GR} \ge 2V$		
V_{RRM}	Repetitive peak reverse voltage		17	V			
I _{DRM}	Repetitive peak off-state current	\leq	100	mΑ	$V_D = V_{DRM}$ $V_{GR} \ge 2V$		
I _{RRM}	Repetitive peak reverse current	\(\)	50	mΑ	$V_R = V_{RRM}$ $R_{GK} = \infty$		
V_{DClink}	Permanent DC voltage for 100		2200	V	$-40 \le T_j \le 125$ °C. Ambient cosmic		
	FIT failure rate				radiation at sea level in open air.		

Mechanical data (see Fig. 19)

F _m	Mounting force	min.		17	kN
	Mounting force			24	kN
Α	Acceleration:			50	m/s ²
	Device unclamped			50	m/s
	Device clamped			200	m/s ²
М	Weight			0.8	kg
Ds	Surface creepage distance		ΛΙ	22	mm
Da	Air strike distance		≥	13	mm

Darrah Electric Company 5914 Merrill Avenue Cleveland, Ohio 44102 USA 216-631-0912 216-631-0440 fax www.darrahelectric.com

GTO Data

On-state

I _{TAVM}	Max. average on-state current	710 A	Half sine wave, $T_C = 85 ^{\circ}C$			
I _{TRMS}	Max. RMS on-state current	1115 A				
I _{TSM}	Max. peak non-repetitive	13 kA	$t_P = 10 \text{ ms} T_j = 125^{\circ}\text{C}$			
	surge current	24 kA	t _P = 1 ms After surge:			
I ² t	Limiting load integral	0.85·10 ⁶ A ² s	$t_P = 10 \text{ ms}$ $V_D = V_R = 0V$			
		0.29·10 ⁶ A ² s	t _P = 1 ms			
V _T	On-state voltage	3.50 V	I _T = 2000 A			
V _{T0}	Threshold voltage	1.80 V	$I_T = 400 - 3000 \text{ A}$ $T_j = 125 ^{\circ}\text{C}$			
r _T	Slope resistance	0.85 mΩ				
I _H	Holding current	50 A	T _j = 25 °C			

Gate

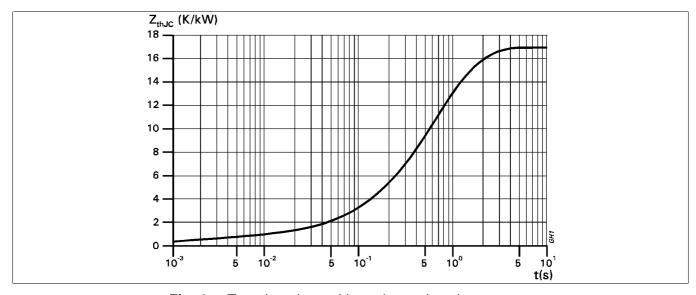
V_{GT}	Gate trigger voltage	1.0 V	$V_D = 24 \text{ V}$ $T_j = 25 \text{ °C}$
I _{GT}	Gate trigger current	2.5 A	$R_A = 0.1 \Omega$
V_{GRM}	Repetitive peak reverse voltage	17 V	
I _{GRM}	Repetitive peak reverse current	50 mA	$V_{GR} = V_{GRM}$

Turn-on switching

	an on switching						
di/dt _{crit}	Max. rate of rise of on-state	400 A/µs	f = 200Hz	$I_T = 2000$) A,	$T_j =$	125 °C
	current	600 A/µs	f = 1Hz	$I_{GM} = 30$	A, di _G	;/dt =	= 20 A/µs
t _d	Delay time	2.0 µs	V _D =	0.5 V _{DRM}	Tj	=	125 °C
t _r	Rise time	6.0 µs	I _T = 20	000 A	di/dt	=	200 A/µs
t _{on(min)}	Min. on-time	80 µs	I _{GM} =	30 A	di _G /dt	=	20 A/µs
E _{on}	Turn-on energy per pulse	2.50 Ws	C _S =	4 µF	R_s	=	5 Ω

Turn-off switching

	i Swittering		
I_{TGQM}	Max controllable turn-off	2000 A	$V_{DM} = V_{DRM}$ $di_{GQ}/dt = 30 A/\mu s$
	current		C_S = 4 μF L_S \leq 0.3 μH
t _s	Storage time	22.0 µs	$V_D = \frac{1}{2} V_{DRM} V_{DM} = V_{DRM}$
t _f	Fall time	3.0 µs	$T_j = 125 ^{\circ}C di_{GQ}/dt = 30 A/\mu s$
t _{off(min)}	Min. off-time	80 µs	$I_{TGQ} = I_{TGQM}$
E _{off}	Turn-off energy per pulse	7.5 Ws	$C_S = 4 \mu F R_S = 5 \Omega$
I_{GQM}	Peak turn-off gate current	725 A	L _S ≤ 0.3 µH


Thermal

T _j	Storage and operating	-40125°C	
	junction temperature range		
R _{thJC}	Thermal resistance	30 K/kW	Anode side cooled
	junction to case	39 K/kW	Cathode side cooled
		17 K/kW	Double side cooled
R _{thCH}	Thermal resistance case to	10 K/kW	Single side cooled
	heat sink	5 K/kW	Double side cooled

Analytical function for transient thermal impedance:

$$Z_{thJC}(t) = \sum_{i=1}^{4} R_i(1 - e^{-t/\tau_i})$$

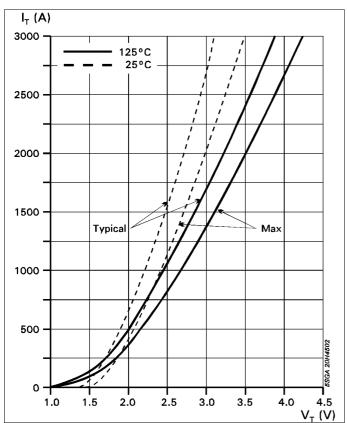
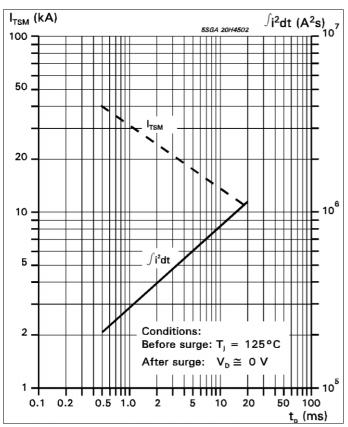

i	1	2	3	4	
R _I (K/kW)	11.7	4.7	0.64	0.0001	
τ _i (s)	0.9	0.26	0.002	0.001	

Fig. 1 Transient thermal impedance, junction to case.

Darrah Electric Company 5914 Merrill Avenue Cleveland, Ohio 44102 USA 216-631-0912 216-631-0440 fax www.darrahelectric.com



P_{AV} (kW) 3.5 3.0 2.5 -DC 180° Л 180° sine 120° □ 2.0 60° ∏ 1.5 1.0 0.5 5SGA 20H4502 200 400 600 800 1000 1200 0 I_{TAV} (A)

Fig. 2 On-state characteristics

Fig. 3 Average on-state power dissipation vs. average on-state current.

Fig. 4 Surge current and fusing integral vs. pulse width

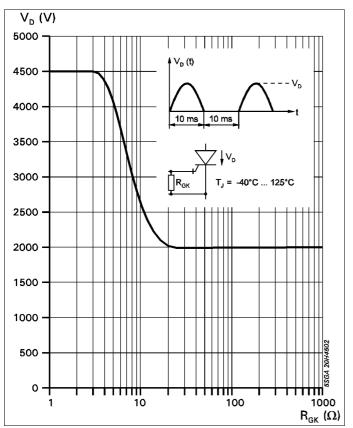


Fig. 5 Forward blocking voltage vs. gate-cathode resistance.

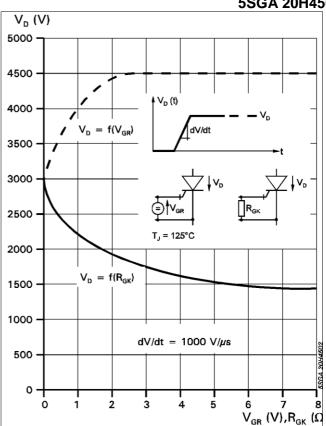
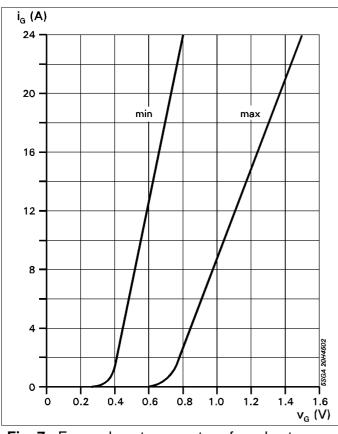
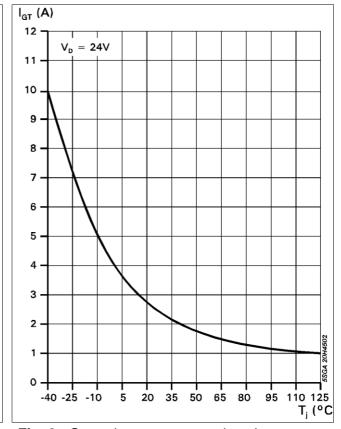




Fig. 6 Static dv/dt capability: Forward blocking voltage vs. neg. gate voltage or gate cathode resistance.

Forwarde gate current vs. forard gate Fig. 7 voltage.

Gate trigger current vs. junction Fig. 8 temperature

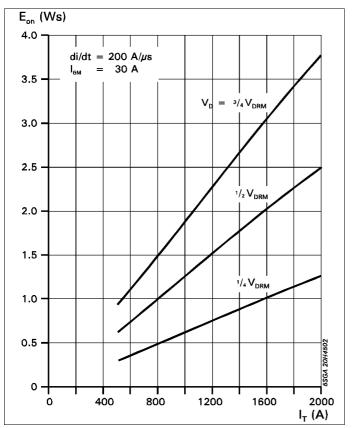
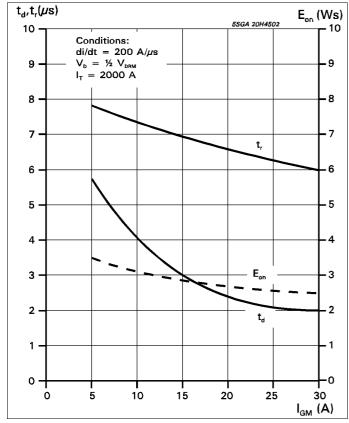
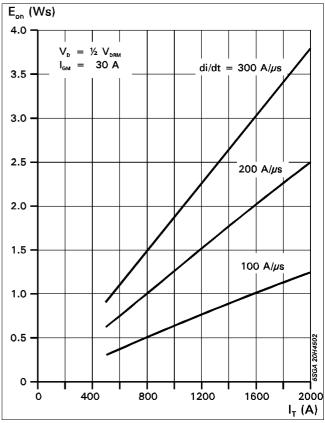




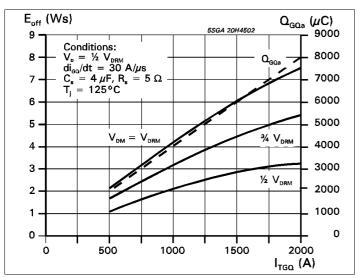
Fig. 9 Turn-on energy per pulse vs. on-state current and turn-on voltage.

Fig. 11 Turn-on energy per pulse vs. on-state current and turn-on voltage.

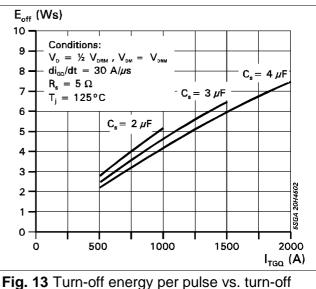
Fig. 10 Turn-on energy per pulse vs. on.-state current and current rise rate

Common Test conditions for figures 9, 10 and 11:

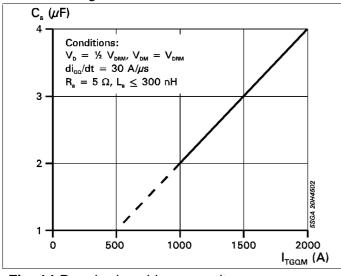
$$di_G/dt = 20 \text{ A/}\mu\text{s}$$
 $C_S = 4 \mu\text{F}$
 $R_S = 5 \Omega$
 $Tj = 125 ^{\circ}\text{C}$

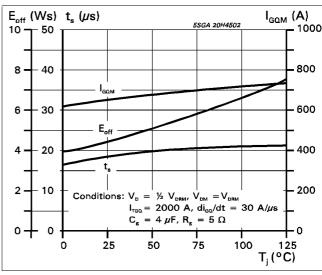

Definition of Turn-on energy:

$$E_{OR} = \int_{0}^{20 \,\mu s} V_D \cdot I \tau dt \quad (t = 0, I_G = 0.1 \cdot I_{GM})$$


Common Test conditions for figures 12, 13 and 15:

Definition of Turn-off energy:


$$E_{off} = \int_{0}^{40 \,\mu s} V_D \cdot I_T dt \quad (t = 0, I_T = 0.9 \cdot I_{TGQ})$$


Fig. 12 Turn-off energy per pulse vs. turn-off current and peak turn-off voltage. Extracted gate charge vs. turn-off current.

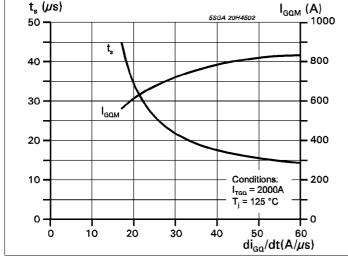

Fig. 13 Turn-off energy per pulse vs. turn-of current and snubber capacitance.

Fig. 14 Required snubber capacitor vs. max allowable turn-off current.

Fig. 15 Turn-off energy per pulse, storage time and peak turn-off gate current vs. junction temperature

Fig. 16 Storage time and peak turn-off gate current vs. neg. gate current rise rate.

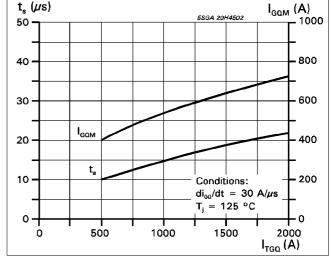


Fig. 17 Storage time and peak turn-off gate current vs. turn-off current

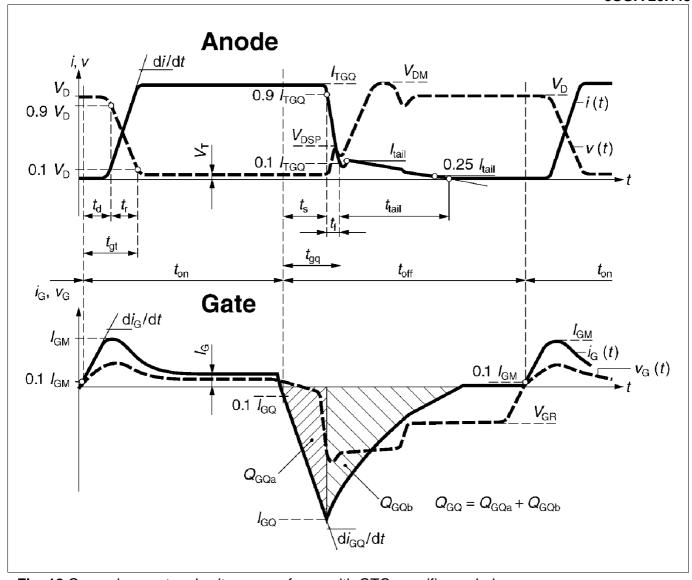
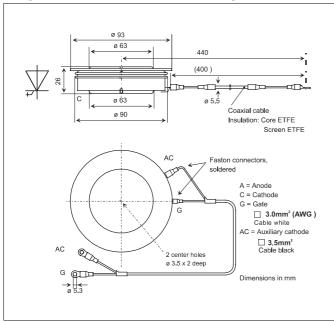



Fig. 18 General current and voltage waveforms with GTO-specific symbols

Fig. 19 Outline drawing. All dimensions are in millimeters and represent nominal values unless stated otherwise.

Reverse avalanche capability

In operation with an antiparallel freewheeling diode, the GTO reverse voltage V_R may exceed the rate value V_{RRM} due to stray inductance and diode turn-on voltage spike at high di/dt. The GTO is then driven into reverse avalanche. This condition is not dangerous for the GTO provided avalanche time and current are below 10 μ s and 1000 A respectively. However, gate voltage must remain negative during this time. Recommendation : $V_{GR} = 10...$ 15 V.

ABB Semiconductors AG reserves the right to change specifications without notice.

ABB Semiconductors AG

Fabrikstrasse 2 CH-5600 Lenzburg, Switzerland

Tel: +41 (0)62 888 6419 Fax: +41 (0)62 888 6306 E-mail info@ch.abb.com Internet www.abbsem.com Doc. No. 5SYA 1210-01 Aug. 2000